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Consideration is given to the mass exchange in countercurrent motion and ideal displacement of the
phases on a plate when the vapor and incoming liquid that leave an ideal plate are in the equilibrium
state. In the complex model of mass exchange proposed, the compositions of the flows on the ideal
and actual plates coincide at a certain distance from the site of injection of the phases. Equality of the
efficiencies in the vapor and liquid phases in countercurrent motion of them is proved. Certain par-
ticular and boundary cases of the complex model are considered. Corresponding relations of the effi-
ciencies are derived. The countercurrent complex model and the fields of its application are analyzed.

In the Murphree [1] and Hausen [2] models, which have received the widest acceptance in the analy-
sis of the efficiency of rectification columns, one condition is the equilibrium of the vapor and liquid that
leave the plate. This condition is valid in total mixing of the liquid on the plate and in concurrent motion of
the phases. In ideal displacement and countercurrent motion of the phases the liquid that arrives at the plate is
in equilibrium with the vapor leaving (Fig. 1). Use of the Murphree and Hausen models in this case leads to
significant errors since in them the concentrations of the highly volatile component in the outgoing vapor are
underestimated and the values of the mass-exchange efficiency are accordingly distorted. Therefore the Mur-
phree and Hausen models cannot cover the entire variety of implementation of rectification processes. This is
confirmed by literature data since, according to some researchers, it is the Murphree model [1, 3, 4] that has
satisfactory convergence with experimental values, according to others it is the Hausen model [2, 5–7], and
according to still others satisfactory convergence is displayed by other mass-exchange models [8-10].

In [11], the author points to certain drawbacks of the existing models that are caused by the condi-
tions of the relationship between the ideal and real plates and by the equilibrium conditions. Similar draw-
backs also occur in the case of countercurrent motion of the interacting phases, where the actual plate is
somewhat idealized and its efficiency is overestimated.

In particular, for the Murphree models [1, 5, 6] when the efficiency in the vapor and liquid phases is
analyzed and for the Hausen model [2, 5, 6] the conditions of the relationship of the ideal and real plates can
be represented in the form of equalities (2) that are given in [11].

As applied to countercurrent motion of the phases, the conditions of equilibrium of the phases on the
ideal plate are formulated as follows (Fig. 1):

yn
∗  = mxn

∗  . (1)

Equalities (2a) of [11] have no effect on dependence (1); the latter is in agreement with the idea of
the operation of the ideal plate, and the reliability of the model is governed by only the conditions of the
relationship of the ideal and real plates.
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With account for equality (2b) of [11] formula (1) acquires the form yn = mxn, according to which
the concentrations of the highly volatile component in the vapor phase after the real plate and in the liquid
before it are overestimated while the corresponding quantities for the ideal plate are underestimated, thus dis-
torting the operating characteristics of the two plates.

Employment of equalities (2c) of [11] in the equilibrium condition (1) leads to the dependence yn
∗  =

mxn, using which we obtain overestimated concentrations of the highly volatile component in the liquid that
arrives at the actual plate and underestimated concentrations in the vapor phase that leaves the ideal plate.
The parameters of the models of the ideal and real plates are also distorted.

Thus, in countercurrent phase motion the calculated values can differ significantly from experimental
data since this difference is built-in in the formation of the models.

By analogy with concurrent motion [11], in countercurrent motion of the liquid and the vapor we
propose the following mass-exchange model (Fig. 2). The incoming and outgoing flows of the vapor and the
liquid on the ideal and real plates differ in composition and are equalized at a certain distance from the site
of injection of the phases h for the vapor and h1 for the liquid (points A and B in Fig. 2, respectively). In

Fig. 1. Scheme of countercurrent flows of the vapor and liquid phases on
the real (a) and ideal (b) plates.

Fig. 2. Change in the concentrations on the real (solid lines) and ideal
(dashed lines) plates in countercurrent phase motion.
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this model, the equations of material balance of the highly volatile component for the ideal and real plates
and the expressions for the efficiency of the mass exchange in the vapor and liquid phases have the same
form as in concurrent motion [11]. Therefore in countercurrent motion we can similarly obtain a relation for
the concentrations of the highly volatile component in the vapor phase and the liquid on the ideal and real
steps and concentrations of the highly volatile component in the vapor phase before and after the ideal plate
that are identical to those in concurrent motion and are expressed by the parameters of the real plate [11].

Countercurrent motion differs from concurrent only in the equilibrium equation (1). Taking this into
account, we can obtain, using the efficiency of the mass transfer in the vapor phase, the difference in the
concentrations of the highly volatile component in the liquid on the ideal and real steps, respectively:
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and using the efficiency in the liquid we can obtain the difference in the concentrations of the highly volatile
component in the vapor phase on the ideal plate
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A comparative analysis of the last expression and (3) confirms the equality of the efficiencies in the
vapor and liquid phases for the mass-exchange model in question, i.e.,

Ev = Eliq = Eg . (5)

In the particular case where the distance h can be equal to h1 formula (3) is simplified:
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(6)

while for h = h1 = 0.5 it is reduced to the form
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The boundary conditions of the complex model are the conditions of the relationship of the ideal and
real plates that are inherent in the Murphree [1, 5, 6] and Hausen [2, 5, 6] models when the distances h and
h1 become equal to zero or unity. For yn−1

∗  = yn−1 and xn−1
∗  = xn−1 these quantities are specified as h = 0 and

h1 = 1. In this case, dependence (3) is simplified:
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If yn
∗  = yn and xn

∗  = xn, which, as applied to the model in question, corresponds to h = 1 and h1 = 0,
expression (3) acquires the form of formula (8) in which the efficiency is equal to unity:
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 .
(9)

With allowance for this fact it should be noted that it seems impossible to use expression (9) for
calculating the parameters of the actual plate in countercurrent motion of the phases since the mass-exchange
efficiency must be less than unity.

When yn−1
∗  = yn−1 and xn

∗  = xn the quantities h and h1 take on zero values, and dependence (3) is
simplified:
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If yn
∗  = yn and xn−1

∗  = xn−1 then h = 1 and h1 = 1, and dependence (3) acquires the form
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The left-hand sides in formulas (7), (8), (10), and (11) are equal. By equating their right-hand sides
we obtain relations between the efficiencies:
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Dependences for determining the efficiency of the real plate based on experimental data can be de-
rived from the generalized formula (3) with account for (5):
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or from its modification (7) for h = h1 = 0.5:
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Fig. 3. Dependence of Eg1 on Eg,m.

Fig. 4. Dependence of Eg3 (a) and Eg4 (b) on Eg,m for different values of
L ⁄ mV: 1) 0; 2) 0.1; 3) 0.2; 4) 0.5; 5) 0.8; 6) 1.0; 7) 2.0; 8) 5.0; 9) 10.
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Figures 3 and 4 give graphical representations of the dependences of individual pairs of efficiencies
of the complex model of mass exchange in countercurrent phase motion in accordance with formula (12).

As is seen from Fig. 3, the values of Eg1 that correspond to countercurrent mass exchange and con-
ditions of the relationship between the ideal and real plates that are similar to the Murphree model in analyz-
ing the efficiency in the vapor phase are higher than the values of Eg,m that correspond to the complex model
in the real range of efficiencies (0 < E < 1) for any values of the parameter L ⁄ mV. This confirms the assump-
tion that the real plate in which yn−1 = yn−1

∗  and xn−1 = xn−1
∗  is somewhat idealized and that the actual condi-

tions of the mass exchange on the plate correspond more fully to the complex model.
The efficiency Eg3 that meets the requirements of the conditions of the relationship between the real

and ideal plates in the Hausen model but in countercurrent phase motion is higher than Eg,m in the real range

Fig. 5. Dependence of Eg on Eg,m for L ⁄ mV = 1.5, h = 0.5 (a), h1 = 0.5
(b), and different values of h1 (a) and h (b): 1) 0; 2) 0.1; 3) 0.2; 4) 0.4;
5) 0.5; 6) 0.6; 7) 0.75 (a) and 0.666 (b); 8) 0.8; 9) 1.0.

Fig. 6. Dependence of Eg on Eg,m for L ⁄ mV = 1.5, h1 = h, and different
values of h: 1) 0; 2) 0.2; 3) 0.4; 4) 0.5; 5) 0.55; 6) 0.6; 7) 0.8; 8) 1.0. 
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for L ⁄ mV > 1 (Fig. 4a). With increase in L ⁄ mV the difference in the efficiencies decreases but does not dis-
appear completely, which also confirms the fuller correspondence of the complex model to the actual condi-
tions. For L ⁄ mV < 1, the real values of one efficiency correspond to nonreal values of the other in any range
of their values.

A similar relationship occurs between the efficiencies Eg4 and Eg,m (Fig. 4b). Unlike the preceding
figure, Eg4 > Eg,m for L ⁄ mV < 1, and the nonreal values of one efficiency correspond to nonreal values of the
other for L ⁄ mV > 1.

The analysis performed shows that, in the complex model, use of the boundary conditions of the re-
lationship of the ideal and real plates when h or h1 is equal to zero or unity leads to overestimation of the
efficiency as compared to its value for h = h1 = 0.5, i.e., the actual plate is slightly idealized by the assign-
ment of the boundary conditions, and certain intermediate values of the efficiencies can be real. This is also
confirmed by Figs. 5 and 6.

From Fig. 5a it follows that for the assigned values L ⁄ mV = 1.5 and h = 0.5 a decrease in h1 from
the average value improves the efficiency while an increase above 3/4 of the total value of the distance leads
to nonreal values. This points to the possibility of using the complex model for 0.5 < h1 < 0.75 but the region
of h > 0.5 is preferable.

For fixed values of L ⁄ mV and h1 (Fig. 5b) the efficiency increases with decrease in h and takes on
nonreal values for h > 0.666. Under these conditions, it is appropriate to use the complex model in the range
of 0.5 < h < 0.666.

A simultaneous increase in the distances h and h1 (Fig. 6) decreases the efficiency of the mass ex-
change as compared to their average values; Eg < Eg,m if h = h1 > 0.5 and Eg > Eg,m if these distances are less
than half. As is seen from Figs. 5 and 6, under certain conditions, Eg < Eg,m; this is probably due to the fact
that in the complex model the efficiency is minimum when h and h1 differ not only from the boundary values
but also from the average value.

The complex model of mass exchange proposed extends the field of application and diminishes nega-
tive circumstances caused by both the conditions of formation of the existing models and the character of the
phase motion.

NOTATION

E, efficiency of the plate; h and h1, dimensionless distance from the site of injection of the vapor and
the liquid, respectively, to the surface of equality of the concentrations of the phases in the ideal and actual
plates; L, molar flow of the liquid; m, coefficient of equilibrium; V, molar flow of the vapor; x and y, con-
centration of the highly volatile component in, respectively, the liquid and the vapor. Subscripts and super-
scripts: g, countercurrent motion of the phases; g,m countercurrent motion of the phases for h = h1 = 0.5; liq,
liquid phase; n, number of the plate in question; n−1, number of the preceding plate in the direction of vapor
motion; v, vapor phase; *, ideal conditions.
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